Neural coding of distinct statistical properties of reward information in humans.

نویسندگان

  • Jean-Claude Dreher
  • Philip Kohn
  • Karen Faith Berman
چکیده

Brain processing of reward information is essential for complex functions such as learning and motivation. Recent primate electrophysiological studies using concepts from information, economic and learning theories indicate that the midbrain may code two statistical parameters of reward information: a transient reward error prediction signal that varies linearly with reward probability and a sustained signal that varies highly non-linearly with reward probability and that is highest with maximal reward uncertainty (reward probability = 0.5). Here, using event-related functional magnetic resonance imaging, we disentangled these two signals in humans using a novel paradigm that systematically varied monetary reward probability, magnitude and expected reward value. The midbrain was activated both transiently with the error prediction signal and in a sustained fashion with reward uncertainty. Moreover, distinct activity dynamics were observed in post-synaptic midbrain projection sites: the prefrontal cortex responded to the transient error prediction signal while the ventral striatum covaried with the sustained reward uncertainty signal. These data suggest that the prefrontal cortex may generate the reward prediction while the ventral striatum may be involved in motivational processes that are useful when an organism needs to obtain more information about its environment. Our results indicate that distinct functional brain networks code different aspects of the statistical properties of reward information in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.

The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological signatures of the in...

متن کامل

Central and Metabolic Effects of High Fructose Consumption: Evidence from Animal and Human Studies

Fructose consumption has increased dramatically in the last 40 years, and its role in the pathogenesis of the metabolic syndrome has been implicated by many studies. It is most often encountered in the diet as sucrose (glucose and fructose) or high-fructose corn syrup (55% fructose). At high levels, dietary exposure to fructose triggers a series of metabolic changes originating in the liver, le...

متن کامل

CHAPTER 6 Neural coding ofcomputational factors affecting decision making 1

We constantly need to make decisions that can result in rewards of different amounts with different probabilities and at different timing. To characterize the neural coding of such computational factors affecting value-based decision making, we have investigated how reward information processing is influenced by parameters such as reward magnitude, probability, delay, effort, and uncertainty us...

متن کامل

Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencep...

متن کامل

The neural underpinnings of how reward associations can both guide and misguide attention.

It is commonly accepted that reward is an effective motivator of behavior, but little is known about potential costs resulting from reward associations. Here, we used functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings of such reward-related performance-disrupting effects in a reward-modulated Stroop task in humans. While reward associations in the task-relevant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2006